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Nanomechanical resonant structures in nanocrystalline diamond
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We report the fabrication and the operation of nanomechanical resonant structures in nanocrystalline
diamond. For this purpose, continuous diamond films as thin as 80 nm were grown using microwave
plasma enhanced chemical vapor deposition. The lateral dimensions of the fabricated structures
were as small as 50 nm and the measured mechanical resonant frequencies were up to 640 MHz.
The mechanical quality factors were in the range of 2500—3000 at room temperature. The elastic
properties of these films obtained via the resonant measurements indicate a Young's modulus close
to that of single-crystal diamond. @002 American Institute of Physics.
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Nanomechanical and nanoelectromechanical resonafthen, the substrate is removed from the chamber and is it
structuredNEMS) are being considered for sensing applica-treated in an ultrasonic bath of nanodiamond powder dis-
tions, similar to those demonstrated in micromechanicapersed in ethanol, rinsed, and dried. Finally, the nanocrystal-
structures(MEMS)>? with a hope of gaining even higher line diamond film is grown at 750 °C using gas flows of 900
sensitivity via the high resonant frequencies achievable isccm hydrogen and 3 sccm methane, 800 W microwave
NEMS. One of the motivations for studying NEMS fabri- power while the thickness is monitoréd situ using laser
cated in different materials is to optimize relevant propertiesnterferometry at 677 nm. The diamond films thus obtained
such as hardness, compatibility with operating environmenthave measured density of 3500 kg the same as the
low dissipation, or the ease of the processing and integratiorlensity of single-crystal diamoridThe Raman spectra of
Another motivation is to study the properties of those matethese films using 488 nm excitation shows a well defined
rials using NEMS. To date, NEMS have been fabricated and332 cm * diamond zone center phonon peak and well as
reported, in SP SixNya4 SicS AIN,® and spin-on glassln ~ Weaker broadband at 1500 ch The deposition process
this work, we report on nanomechanical resonant structuredescribed herein has been used to deposit diamond films on
fabricated in nanocrystalline diamond. For technological purSilicon and silicon dioxide. For the purposes of this study, the
poses, diamond may be one of the most desirable materiafms were deposited on Am of silicon dioxide obtained by
for many NEMS applications because it is chemically verythérmal oxidation of a single-crystal silicon wafer.
resistant, has a high hardness and thermal conductivity. Dop- 1€ Structures seen in the micrographs in Figs. 1, 2, and
ing during deposition also allows for a wide range of elec-3 are fabricated using electron-beam lithography. The pattern

trical conductivitie€ In particular, the high Young's modulus 'S transf?rrgd into the diamond films using a,08, reactive
of diamondE (~1000 GPaas well as relatively low mass ©" etcht! with the diamond film protected by a metal mask.
density, p (3500 kg1 ?) .2 result in a high sound velocity After the removal of the mask, the structures are released in

[ET. A5 il be snown nex  ighsand velosyalows 5 EILOrC St e e g o

us to retain the size of a resonant structure and still obtain a Yer. - .q L y .

) . . . we use for silico® and silicon nitridé nanomechanical

high resonant frequency. To date, MEMS with dimensions an . "
. structures. Most of the structures did not need the critical

order of magnitude or 2 larger than those reported here havg

been fabricated in polycrystalline diamoHthanocrystalline rying point SFeb for their release. The resulting structures
. 11 ; have lateral dimensions as small as 50 nm and as large as 6
diamond!! as well as in amorphous carbbn.

The nanocrystalline diamond films used for fabricating’um' Figure 1 shows details of a part of the structure, 200 nm

the struct d ibed h h | th st wide and about 200 nm thick. In the same picture, we can
€ structures described here have a columnar growth sttige o yhe columnar grain structure and the surface roughness of
ture with grains that range in size from 5-15 nm on the

X . . ! these films.
nucleation side to~10% the thickness of the film on the Figures 1 and 2 show mechanical structures that were

growth surface. The deposition is done by microwave plasm%ctuated using a piezoelemdhtAll of the measurements
enhgqied chemical vapor depositi@VD) using CH, and e done in a vacuum of about 10 Torr. The motion is
H,.™™ The substrate is pretreated by exposing it 10 theyetected interferometrically 8 with the structure efficiently
deposition conditions in the microwave chamber for 20 MiN.modulating the light at 633 nm. The measured resonant fre-
guencies of the doubly clamped padd(égy. 1) range from
dElectronic mail: Is63@cornell.edu 6—30 MHz for their flexural (out-of-plang mode of
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FIG. 1. A 22 um diamond paddle
with the details of the supporting arms
[in (&) and(b)].

200 nm

motion® Their quality factors,Q=f/Af are 2400-3500. contribution of the gold layer, we derive the value of Young’s
The measured resonant frequencies of the structures in Fig.r@odulus for the diamond to be 840 GPa. The value obtained
were 8—20 MHz and their quality factors were around 3000from this analysis is about 20% lower than that obtained for
The set of structures whose resonant frequencies we use some of the diamond films grown under the same conditions
derive materials properties are shown in Fig. 3. They arend measured using surface acoustic wHvasd is also out-
doubly clamped beams varying in length from 8 tauth, in  side the range of values of other CVD filfsr single-crystal
steps of 0.5um and resonant frequencies 34—640 MHz. Thediamond® Considering that the beams are released by an
width of the fabricated beams was as small as 50 nm and asotropic etch which results in an undercut to the base that
wide as 1um and thicknesses of about 180 nm. The beamsnay contribute to the motion, this additional released mate-
were actuated using an applied rf voltage between the strueial may result in a lower-frequency relative to a rigidly
ture and the substratéIn order to use this electrostatic driv- clamped beam. A simple addition of the overhang length to
ing scheme, a wetting layer of chromium and a 35 nm layethe length of the structure does not give an accurate treat-
of gold for conducting the electrical signal were evaporatednent. The overhang is however somewhat clamped and an
on the structures and the substrate. Because the volumetiéxact solution of the mode shape is necessary as it has been
fraction of the gold layer was significant, we expect it to demonstrated in other analyses of similar be&@s.e would
affect the mechanical properties of the beams. not predict a very different value of Young’s modulus in fully
The data in Fig. 3 show the frequency dependence on thdense nanocrystalline films compared to the bulk Young'’s
length of the beams. The angular frequeney,of the first ~ modulus. A polycrystalline material would have to have very

resonant mode of a doubly clamped beam is givedi®by: large grain boundaries and very small grajmauch smaller
than in this materialfor its elastic properties to differ dras-
473 | E tically from th l ial Its f K
_ t y from the crystalline material as results from Baker
w Lz 1 20 . . .
2 et al“" demonstrate that a 10% difference is barely achiev-

able.

The resonant frequency of a/2m long, 180 nm thick
diamond beam is 640 MHz. For comparison, the frequency
of a 200 nm thick silicon beam of the same length is 380
MHz.?! The most important factor in the selection of a ma-
Peftective™ Y diamond diamond™ VgoldPgold s terial with which one can obtain the highest resonant fre-

andV aeriallS the relevant volumetric fraction. Assuming the qyency for a give.n size is the 30”_'”0' velocity of the material,
density of gold to be 19300 kg, and the density of the 9'VeN by VE/p. Diamond has a high sound velocity, 18 000
diamond 3500 kgm?® we arrive at an effective Young's MS ~ compared to AIN(5500, Si (7500, or SiC (11 400.

modulus of about 700 GPa. Taking into account the elastic

Here, L is the length of the beant, its thickness,E is
Young’s modulus of the material, andis its density. For a
bilayer diamond/gold structure such as this gnis replaced
by pefrective Where

10

Frequency (Hz)

10

y = 0.0019031 * x -20146

.6 I -5
10 Beam length (in) 10

FIG. 3. Resonant frequencies of the doubly clamped diamond beams, 1-8
um long (inse) plotted vs their length. The shortest beam measured was 2

FIG. 2. An 8um and a 2.5um radius mesh membrane structure. pm long.
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